Question 03 (Subgroup of Dihedral Group Dn)

 The number of subgroups of \(D_{20}\) are-

(a) 20

(b) 40

(c) 48

(d) 50


Explanation: (c) is the correct answer as \(D_n\) has \(\tau(n)+\sigma(n)\) subgroups. 

Note: If \(n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}\) then 

\(\tau(n)=(k_1+1)(k_2+2)\cdots(k_r+r)\) and

\(\sigma(n)=\frac{p_1^{k_1+1}-1}{p_1-1}\frac{p_2^{k_2+1}-1}{p_2-1}\cdots \frac{p_r^{k_r+1}-1}{p_r-1}\)

Post a Comment

Previous Post Next Post